Learning kernels from biological networks by maximizing entropy

نویسندگان

  • Koji Tsuda
  • William Stafford Noble
چکیده

MOTIVATION The diffusion kernel is a general method for computing pairwise distances among all nodes in a graph, based on the sum of weighted paths between each pair of nodes. This technique has been used successfully, in conjunction with kernel-based learning methods, to draw inferences from several types of biological networks. RESULTS We show that computing the diffusion kernel is equivalent to maximizing the von Neumann entropy, subject to a global constraint on the sum of the Euclidean distances between nodes. This global constraint allows for high variance in the pairwise distances. Accordingly, we propose an alternative, locally constrained diffusion kernel, and we demonstrate that the resulting kernel allows for more accurate support vector machine prediction of protein functional classifications from metabolic and protein-protein interaction networks. AVAILABILITY Supplementary results and data are available at noble.gs.washington.edu/proj/maxent

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel-based topographic map formation achieved with an information-theoretic approach

A new information-theoretic learning algorithm is introduced for kernel-based topographic map formation. The kernels are allowed to overlap and move freely in the input space, and to have differing kernel ranges. We start with Linsker's infomax principle and observe that it cannot be readily extended to our case, exactly due to the presence of kernels. We then consider Bell and Sejnowski's gene...

متن کامل

Kernel Integration using von Neumann Entropy

Kernel methods provide a computational framework to integrate heterogeneous biological data from different sources for a wide range of learning algorithms by designing a kernel for each different information source and combining them in a unique kernel through simple mathematical operations. We develop here a novel technique for weighting kernels based on their von Neumann entropy. This permits...

متن کامل

On Power-Law Kernels, Corresponding Reproducing Kernel Hilbert Space and Applications

The role of kernels is central to machine learning. Motivated by the importance of power-law distributions in statistical modeling, in this paper, we propose the notion of powerlaw kernels to investigate power-laws in learning problem. We propose two power-law kernels by generalizing Gaussian and Laplacian kernels. This generalization is based on distributions, arising out of maximization of a ...

متن کامل

Maximum Entropy Learning with Deep Belief Networks

Conventionally, the maximum likelihood (ML) criterion is applied to train a deep belief network (DBN). We present a maximum entropy (ME) learning algorithm for DBNs, designed specifically to handle limited training data. Maximizing only the entropy of parameters in the DBN allows more effective generalization capability, less bias towards data distributions, and robustness to over-fitting compa...

متن کامل

On learning with kernels for unordered pairs

We propose and analyze two strategies to learn over unordered pairs with kernels, and provide a common theoretical framework to compare them. The strategies are related to methods that were recently investigated to predict edges in biological networks. We show that both strategies differ in their loss function and in the kernels they use. We deduce in particular a smooth interpolation between t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 20 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2004